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Abstract: This paper explores the asymptotic and oscillatory properties of a class of third-order
neutral differential equations with multiple delays in a non-canonical form. The main objective is to
simplify the non-canonical form by converting it to a canonical form, which reduces the complexity of
the possible cases of positive solutions and their derivatives from four cases in the non-canonical form
to only two cases in the canonical form, which facilitates the process of inference and development
of results. New criteria are provided that exclude the existence of positive solutions or Kneser-
type solutions for this class of equations. New criteria that guarantee the oscillatory behavior of
all solutions that satisfy the conditions imposed on the studied equation are also derived. This
work makes a qualitative contribution to the development of previous studies in the field of neutral
differential equations, as it provides new insights into the oscillatory behavior of neutral equations
with multiple delays. To confirm the strength and effectiveness of the results, three examples are
included that highlight the accuracy of the derived criteria and their practical applicability, which
enhances the value of this research and expands the scope of its use in the field.

Keywords: oscillatory behavior; non-oscillatory behavior; neutral differential equations; third-order;
non-canonical case; multiple delays

MSC: 34C10; 34K11

1. Introduction

In this study, we focus on the oscillatory properties of the third-order linear neutral
differential equation represented as(

r2(s)
(
r1(s)z′(s)

)′)′
+

n

∑
i=1

qi(s)x(yi(s)) = 0, (1)

where z(s) := x(s) + p(s)x(r(s)), s≥s0. We consider the following fundamental assump-
tions throughout the paper:

(H1) r, yi ∈ C1([s0, ∞),R), yi(s) ≤s, y′i(s) > 0,
(
y−1

i (s)
)′

≥ y0 > 0, r′(s) ≥ r0 > 0,
and lims→∞ r(s) = lims→∞ yi(s) = ∞, i = 1, 2, ..., n.

(H2) p, q ∈ C([s0, ∞), (0, ∞)), 0 ≤p(s) ≤p0 < ∞ and q(s) does not vanish identically.
(H3) r1 ∈ C2([s0, ∞), (0, ∞)), r2 ∈ C1([s0, ∞), (0, ∞)), and (1) is in non-canonical case, that is
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∫ ∞

s0

1
r1(ℓ)

dℓ < ∞ and
∫ ∞

s0

1
r2(ℓ)

dℓ < ∞. (2)

(H4) r(s) ≤s and r ◦ yi = yi ◦ r, i = 1, 2, ..., n.

A function x ∈ C3([Sx, ∞),R), Sx ⩾ s0, is said to be a solution of (1) which has the
property r2(r1z′)′ ∈ C1[Sx, ∞), and it satisfies Equation (1) for all x ∈ [Sx, ∞). We consider
only those solutions x of (1) which exist on some half-line [Sx, ∞) and satisfy the condition

sup{|x(s)| : s ⩾ S} > 0, for all S ≥ Sx.

For the sake of simplicity, we define the operators:

L0z = z, L1z = r1z′, L2z = r2
(
r1z′

)′, and L3z =
(

r2
(
r1z′

)′)′.
A solution of (1) is called oscillatory if it is neither eventually positive nor eventually

negative. Otherwise, it is said to be non-oscillatory. Equation (1) is said to be oscillatory if
all of its solutions are oscillatory.

Functional differential equations (FDEs) are equations in which the current value of
variables depends on past or future states, making them essential for studying systems
influenced by their historical behavior. Key types of these equations include delay differen-
tial equations, neutral functional differential equations, integro-differential equations, and
advanced differential equations. These equations are vital for modeling complex systems
in fields such as physics, biology, and engineering. For example, in ecology, FDEs help
analyze population dynamics based on past states, while in control theory, they manage
feedback systems to ensure stability. As modern systems grow increasingly complex, on-
going research in FDEs is crucial for developing theoretical foundations and numerical
methods to solve real-world problems (see [1–6]).

Neutral differential equations (NDEs) refer to a specific subset of functional differential
equations (FDEs) where derivatives are influenced by both the current values of the function
and its derivatives at earlier times. This unique characteristic distinguishes NDEs from
traditional FDEs and establishes a distinct analytical framework. The relationship between
NDEs and FDEs is pivotal, as they often arise in systems where both past values and rates
of change affect future states. The significance of NDEs is particularly evident in fields
such as control theory and signal processing, where they describe systems with memory
effects. For instance, in mechanical systems with inertia, acceleration may depend on both
the current position and velocity. This relationship highlights the importance of NDEs in
accurately modeling and simulating dynamic systems. Furthermore, the study of NDEs
complements that of FDEs, as understanding one often provides valuable insights into
the other. Thus, the exploration of neutral differential equations enriches the theoretical
framework and enhances practical applications across various scientific and engineering
disciplines (see [7–14]).

Oscillatory theorems play a critical role in the analysis of functional and neutral dif-
ferential equations, as they establish essential criteria for determining whether solutions
exhibit oscillatory behavior. Understanding this behavior is vital for assessing the stability
and long-term dynamics of various systems, especially in engineering contexts where
predicting oscillation versus steady-state behavior influences design and operational deci-
sions. These theorems often utilize advanced mathematical techniques, such as comparison
principles and integral inequalities, to derive significant results. Moreover, the relationship
between oscillatory behavior and the inherent characteristics of these differential equations
underscores a rich research area, particularly regarding how delays and memory effects can
shape the oscillatory nature of solutions. This intersection is key to advancing knowledge
in both theoretical and applied mathematics (see [15–21]).

Recent studies have explored advanced numerical methods, particularly radial basis
function (RBF) networks and neural networks, for solving neutral delay differential equa-
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tions (NDDEs), demonstrating significant improvements in both precision and stability. For
instance, Saeed [22] highlighted the effectiveness of RBF networks as a powerful strategy
for addressing the inherent complexities of NDDEs, offering enhanced numerical efficiency
in dealing with delayed systems. Building on this, Noorizadegan et al. [23] refined the RBF
approach by employing the fictitious point method, resulting in notable advancements in
precision and stability through optimal selection of the shape parameter, a critical factor in
solving complex delay differential equations. Additionally, Vinodbhai and Dubey [24] in-
troduced a novel application of orthogonal neural networks for solving NDDEs, achieving
remarkable accuracy in capturing the intricate dynamics of delayed behaviors.

While even-order neutral differential equations have received considerable attention,
the study of odd-order NDEs has also gained traction, reflecting a growing recognition of
their importance. Interested readers are encouraged to consult several key studies in this
area, including the pioneering works by Parhi and Das [25] and Parhi and Padhi [26,27].
Subsequent contributions include studies by Baculikova and Džurina [28] and Dzurina [29],
which focus on oscillation criteria and asymptotic behavior. Noteworthy recent advance-
ments can be found in the research conducted by Bohner et al. [30] and Chatzarakis
et al. [31,32], which provide significant insights into oscillation conditions for third-order
delay differential equations. The works of Moaaz et al. [33] further explore Kneser-type
solutions and oscillatory behavior in various contexts. Finally, recent contributions by Ma-
sood et al. [34,35] present more effective criteria for assessing the asymptotic and oscillatory
behavior of solutions.

In recent years, there has been considerable progress in the study of the oscillatory be-
havior of higher-order differential equations, particularly third-order differential equations
with delays. Bohner et al. [36] extended Hanan’s Kneser-type oscillation criterion, initially
developed for ordinary differential equations of the form

x′′′(s) + q(s)x(s) = 0,

to DDEs of the form
x′′′(s) + q(s)x(y(s)) = 0. (3)

This extension was shown to retain sharpness when applied to the delay Euler DEs

x′′′(s) +
q0

s3 x(λs) = 0, λ ∈ (0, 1), s ≥ 1,

and in [37] the same authors extend the results and complete the study about (3).
Chatzarakis et al. [38] introduced new criteria to assess the oscillatory behavior of

third-order NDEs of the form

z′′′(ℓ) + q(ℓ)xα(y(ℓ)) = 0.

They developed rigorous conditions demonstrating the nonexistence of Kneser-type
solutions in these equations, pushing the boundaries of oscillation theory for NDEs.

Through the use of Riccati transformation techniques, Saker [39] established conditions
that ensure every solution to the NDEs of the form(

r2(s)
(
r1(s)z′(s)

)′)′
+ q(s) f (x(s − y)) = 0, (4)

is oscillatory. This study contributed valuable insights into the oscillation of solutions in
nonlinear DEs.

In the non-canonical case, Grace et al. [40] developed new criteria for oscillation in
third-order delay differential equations, specifically equations of the form(

r2(s)
(
r1(s)x′(s)

)′)′
+ q(s)x(y(s)) = 0. (5)
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These criteria were extended by Baculıkova [41], who employed an appropriate substi-
tution to transform (5) into the canonical form. This transformation enabled the introduction
of new oscillation criteria, offering a more comprehensive understanding of oscillation
behavior in non-canonical equations.

Further advancements were made by Nithyakala et al. [42] and Purushothaman
et al. [43], who derived asymptotic and oscillatory results for third-order NDEs of the form(

r2(s)
(
r1(s)z′(s)

)′)′
+ q(s)x(y(s)) = 0,

with non-canonical operators and they used the same transform that in [41].
This research aims to build upon these foundational studies by deriving new oscillation

criteria for a specific class of neutral third-order differential equations with multiple delays.
By extending the results of previous studies, particularly those of [42,43], we transform the
investigated equations from non-canonical form into canonical form. The results obtained
in this study are consistent with previous findings, offering refined criteria for oscillatory
solutions when n = 1. The comparison method with first-order equations was employed to
achieve these results, marking a significant contribution to the field of differential equation
oscillation theory.

The rest of this paper is organized as follows: Section 2 presents the essential defini-
tions and foundational lemmas required to simplify the mathematical operations in the
subsequent sections. In Section 3, we establish the conditions that guarantee the nonexis-
tence of N-Kneser solutions in the case of (N0). Section 4 outlines the specific conditions
that ensure the nonexistence of positive solutions in the case of (N2). In Section 5, we
combine the results from the previous sections to formulate comprehensive oscillatory
criteria for the equation under consideration. Section 6 provides examples that validate
and illustrate the effectiveness of our results. Finally, Section 7 provides a conclusion that
highlights the key contributions of this work and suggests avenues for future research.

2. Preliminary Results

This section introduces definitions, lemmas, and assumptions essential for simplifying
the mathematical calculations used throughout this paper. These elements lay the ground-
work for understanding the more complex results presented in later sections. For the sake
of brevity and clarity, we define the key terms and notations as follows:

π1(s) :=
∫ ∞

s

1
r1(ℓ)

dℓ, π2(s) :=
∫ ∞

s

1
r2(ℓ)

dℓ, π3(s) :=
∫ ∞

s

π2(ℓ)

r1(ℓ)
dℓ, π∗(s) :=

∫ ∞

s

π1(ℓ)

r2(ℓ)
dℓ

κ1(s) :=
r1(s)π2

3(s)
π∗(s)

, and κ2(s) :=
r2(s)π2

∗(s)
π3(s)

.

µ1(s) :=
∫ s

s0

1
κ1(ℓ)

dℓ, µ2(s) :=
∫ s

s0

1
κ2(ℓ)

dℓ, µ3(s) :=
∫ s

s0

µ2(ℓ)

κ1(ℓ)
dℓ,

µ1(ς, ϱ) :=
∫ ς

ϱ

1
κ1(ℓ)

dℓ, µ2(ς, ϱ) :=
∫ ς

ϱ

1
κ2(ℓ)

dℓ, µ3(ς, ϱ) :=
∫ ς

ϱ

µ2(ℓ, ϱ)

κ1(ℓ)
dℓ

g̃i(s) := min{gi(s), gi(r(s))}, ĝi(s) := min
{

gi

(
y−1

i (s)
)

, gi

(
y−1

i (r(s))
)}

,

G1(s) :=
n

∑
i=1

g̃i(s)π3(yi(s)), G2(s) := π3(s)
n

∑
i=1

ĝi(s),

G3(s) :=
n

∑
i=1

gi(s)(1 − p(yi(s)))π3(yi(s)),

and

ymax(s) := max{yi(s), i = 1, 2, ..., n}, ymin(s) := min{yi(s), i = 1, 2, ..., n}
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Lemma 1 ([44]). Let γ be a ratio of two odd positive integers. κ > 0 and B are constants. Then

Bu − κu(γ+1)/γ ≤ γγ

(γ + 1)γ+1
Bγ+1

κγ
, κ > 0. (6)

Lemma 2 ([45]). Let x be an eventually positive solution of Equation (1). Then there exists s1 ≥s0
such that the associated function z can be classified into one of the following cases:

Case (C0) : z > 0, L1z < 0, L2z > 0, L3z < 0,

Case (C1) : z > 0, L1z < 0, L2z < 0, L3z < 0,

Case (C2) : z > 0, L1z > 0, L2z > 0, L3z < 0,

Case (C3) : z > 0, L1z > 0, L2z < 0, L3z < 0,

for s⩾s1.

To establish conditions for the oscillation of Equation (1), we must eliminate all four of
these cases. Moreover, for the nonexistence of Kneser-type solutions, Cases (C0) and (C1)
must be ruled out. However, when Equation (1) is transformed into its canonical form, the
number of classes for non-oscillatory solutions is reduced from four to two, significantly
simplifying the analysis.

We begin by transforming the original equation into an equivalent canonical form, as
established in [41]. The transformed equation is expressed as follows:(

κ2(s)

(
κ1(s)

(
z(s)

π3(s)

)′
)′)′

+ π∗(s)
n

∑
i=1

qi(s)x(yi(s)) = 0. (7)

By introducing the substitution w(s) = z(s)
π3(s)

, and defining gi(s) := π∗(s)qi(s), we can
simplify the equation to

(
κ2(s)

(
κ1(s)w′(s)

)′)′
+

n

∑
i=1

gi(s)x(yi(s)) = 0, (8)

with ∫ ∞

s0

1
κ1(ℓ)

dℓ < ∞ and
∫ ∞

s0

1
κ2(ℓ)

dℓ < ∞.

This transformation indicates that the solution of the noncanonical equation is equiva-
lent to the solution of the canonical form.

Next, we define

D0w = w, D1w = r1w′, D2w = r2

((
r1w′)′), and D3w =

(
w2

((
r1w′)′))′.

We can now conclude that the noncanonical neutral differential Equation (1) has an
eventually positive solution if and only if the canonical Equation (8) exhibits the same behavior.
This simplifies the examination to two distinct classes of eventually positive solutions.

Lemma 3 ([46]). Assume that x is an eventually positive solution of Equation (8). Then there
exists s1 ≥s0 such that w is one of the following cases:

Case (N0) : w > 0, κ1w′ < 0, κ2
(
κ1w′)′ > 0,

(
κ2
(
κ1w′)′)′ < 0,

Case (N2) : w > 0, κ1w′ > 0, κ2
(
κ1w′)′ > 0,

(
κ2
(
κ1w′)′)′ < 0.
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We denote the sets Ω0 and Ω2 as the collections of eventually, positive solutions
satisfying the conditions of Case (N0) and Case (N2), respectively.

Definition 1 ([47]). The solutions x whose corresponding function w ∈ N0 are called Kneser-
type solutions.

Definition 2 ([47]). Equation (1) has property A if and only if any nonoscillatory solution x is
Kneser-type and lims→∞ x(s) = 0.

3. Conditions for the Absence of N-Kneser Solutions

In this section, we outline particular conditions that ensure the nonexistence of N-
Kneser solutions fulfilling the case (N0) within Category Ω0.

Theorem 1. Let ζ(s) ∈ C([s0, ∞), (0, ∞)) such that ymax(s) < ζ(s) and r−1(ζ(s)) <s. If the
differential equation

ω′(s) +
r0

r0 + p0
G1(s)µ3(ζ(s), ymax(s))ω

(
r−1(ζ(s))

)
= 0, (9)

is oscillatory, then it follows that Ω0 = ∅.

Proof. Let x ∈ Ω0 such that x(s) > 0 and x(yi(s)) > 0 for s≥s1 ≥s0. This leads to

(−1)kw(k)(s) > 0, for k = 0, 1, 2, 3. (10)

From Equation (8), it follows that

0 ≥ p0

r(t)
D3w(r(s)) + π∗(s)

n

∑
i=1

p0gi(r(s))x(yi(r(s)))

≥ p0

r0
D3w(r(s)) + π∗(s)

n

∑
i=1

p0gi(r(s))x(yi(r(s))). (11)

Combining (8) and (11), we obtain

0 ≥ D3w(s) +
p0

r0
D3w(r(s)) +

n

∑
i=1

[gi(s)x(yi(s)) + p0gi(r(s))x(yi(r(s)))]

≥ D3w(s) +
p0

r0
D3w(r(s)) +

n

∑
i=1

g̃i(s)[x(yi(s)) + p0x(yi(r(s)))]. (12)

Based on the definition of z, we can express it as

z(yi(s)) = x(yi(s)) + p(yi(s))x(r(yi(s))) ≤ x(yi(s)) + p0x(r(yi(s))).

By using the latter inequality in (12), we obtain

0 ≥ D3w(s) +
p0

r0
D3w(r(s)) +

n

∑
i=1

g̃i(s)z(yi(s)). (13)

Since w(s) = z(s)/π3(s), then

0 ≥ D3w(s) +
p0

r0
D3w(r(s)) +

n

∑
i=1

g̃i(s)π3(yi(s))w(yi(s)).
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Since w′(s) < 0, then

0 ≥ D3w(s) +
p0

r0
D3w(r(s)) + w(ymax(s))

n

∑
i=1

g̃i(s)π3(yi(s)).

That is (
D2w(s) +

p0

r0
D2w(r(s))

)′
+ G1(s)w(ymax(s)) ≤ 0. (14)

On the other hand, it follows from the monotonicity of D2w that

−D1w(ϱ) ≥ D1w(ς)− D1w(ϱ) =
∫ ς

ϱ

D2w(ℓ)

κ2(ℓ)
dℓ ≥ D2w(ς)

∫ ς

ϱ

1
κ2(ℓ)

dℓ

= D2w(ς)µ2(ς, ϱ). (15)

Integrating (15) from ϱ to ς, we have

w(ϱ) ≥ −w(ς) + w(ϱ) =
∫ ς

ϱ

D2w(ℓ)µ2(ς, ϱ)

κ1(ℓ)
dℓ ≥ D2w(ς)

∫ ς

ϱ

µ2(ς, ϱ)

κ1(ℓ)
dℓ

= D2w(ς)µ3(ς, ϱ). (16)

Then
w(ϱ) ≥ D2w(ς)µ3(ς, ϱ). (17)

Thus, we have
w(ymax(s)) ≥ D2w(ζ(s))µ3(ζ(s), ymax(s))

which, by virtue of (14) yields

0 ≥
(

D2w(s) +
p0

r0
D2w(r(s))

)′
+ G1(s)µ3(ζ(s), ymax(s))D2w(ζ(s)). (18)

Now, set
ω(s) = D2w(s) +

p0

r0
D2w(r(s)) > 0.

Since D2w is a non-increasing function, it follows that

ω(s) ≤ D2w(r(s))
(

1 +
p0

r0

)
,

which can be rewritten as

D2w(ζ(s)) ≥ r0

r0 + p0
ω
(
r−1(ζ(s))

)
. (19)

Substituting (19) into (18), we obtain that ω satisfies the following differential inequality

ω′(s) +
r0

r0 + p0
G1(s)µ3(ζ(s), ymax(s))ω

(
r−1(ζ(s))

)
≤ 0.

According to ([48], Theorem 1), this implies that (9) also has a positive solution, leading
to a contradiction. Therefore, the proof is concluded.

Corollary 1. Let ζ(s) ∈ C([s0, ∞), (0, ∞)) such that ymax(s) < ζ(s) and r−1(ζ(s)) <s. If

lim inf
s→∞

∫ s

r−1(ζ(s))
G1(ℓ)µ3(ζ(ℓ), ymax(ℓ))dℓ >

r0 + p0

r0e
, (20)

then Ω0 = ∅.
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Theorem 2. Let δ(s) ∈ C([s0, ∞), (0, ∞)) such that δ(s) <s and ymax(s) < r(δ(s)). If

lim sup
s→∞

µ3(r(δ(s)), ymax(s))
∫ s

δ(s)
G1(ℓ)dℓ >

r0 + p0

r0
, (21)

then Ω0 = ∅.

Proof. Following the same method used in the proof of Theorem 1, we derive the inequality(
D2w(s) +

p0

r0
D2w(r(s))

)′
+ G1(s)w(ymax(s)) ≤ 0.

By integrating this inequality over the interval (y(s), s) and applying the fact that w is
a decreasing function, we obtain

D2w(δ(s)) +
p0

r0
D2w(r(δ(s))) ≥ D2w(s) +

p0

r0
D2w(r(s)) +

∫ s

δ(s)
G1(ℓ)w(ymax(ℓ))dℓ

≥ w(ymax(s))
∫ s

δ(s)
G1(ℓ)dℓ.

Since r(δ(s)) < r(s) and D3w ≤ 0, we have

D2w(r(δ(s)))
(

1 +
p0

r0

)
≥ w(ymax(s))

∫ s

δ(s)
G1(ℓ)dℓ. (22)

By utilizing (17) with ς = r(δ(s)) and ϱ = ymax(s) into (22), we deduce that

D2w(r(δ(s)))
(

1 +
p0

r0

)
≥ D2w(r(δ(s)))µ3(r(δ(s)), ymax(s))

∫ s

δ(s)
G1(ℓ)dℓ.

That is
r0 + p0

r0
≥ µ3(r(δ(s)), ymax(s))

∫ s

δ(s)
G1(ℓ)dℓ.

Taking the lim sup of both sides of the inequality reveals a contradiction with (21).
Thus, we can conclude the proof.

Corollary 2. Letting δ(s) = r(s) in Theorem 2. If y(s) < r(r(s)), such that

lim sup
s→∞

µ3(r(r(s)), ymax(s))
∫ s

r(s)
G1(ℓ)dℓ >

r0 + p0

r0
, (23)

holds, then Ω0 = ∅.

Theorem 3. Assume that ymax(r(s)) <s holds. If the differential equation

Ψ′(s) +
y0r0

r0 + p0
µ3(r(s), s)G2(s)π(s)Ψ(ymax(s)) = 0, (24)

is oscillatory, then Ω0 = ∅.

Proof. Let x ∈ Ω0 such that x(s) > 0, x(r(s)) > 0 and x(yi(s)) > 0 for s≥s1 ≥s0. This
leads to

(−1)kz(k)(s) > 0, for k = 0, 1, 2, 3.
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From Equation (8), it follows that

0 ≥ 1(
y−1

i (s)
)′ D3w

(
y−1

i (s)
)
+

n

∑
i=1

gi

(
y−1

i (s)
)

x(s)

≥ 1
y0

D3w
(
y−1

i (s)
)
+

n

∑
i=1

gi

(
y−1

i (s)
)

x(s)

Similarly,

0 ≥ p0(
y−1

i (r(s))
)′ D3w

(
y−1

i (r(s))
)
+

n

∑
i=1

p0gi

(
y−1

i (r(s))
)

x(r(s))

≥ p0

y0r0
D3w

(
y−1

i (r(s))
)
+

n

∑
i=1

p0gi

(
y−1

i (r(s))
)

x(r(s)).

Combining the above inequalities yields that

0 ≥ 1
y0

D3w
(
y−1

i (s)
)
+

n

∑
i=1

gi

(
y−1

i (s)
)

x(s))

+
p0

y0r0
D3w

(
y−1

i (r(s))
)
+

n

∑
i=1

p0gi

(
y−1

i (r(s))
)

x(r(s)

≥ 1
y0

D3w
(
y−1

i (s)
)
+

p0

y0r0
D3w

(
y−1

i (r(s))
)
+

n

∑
i=1

[
gi

(
y−1

i (s)
)

x(s) + p0gi

(
y−1

i (r(s))
)

x(r(s)
]

≥ 1
y0

D3w
(
y−1

i (s)
)
+

p0

y0r0
D3w

(
y−1

i (r(s))
)
+

n

∑
i=1

ĝi(s)[(x(s) + p0x(r(s))].

From the definition of z, we have

0 ≥ 1
y0

D3w
(
y−1

i (s)
)
+

p0

y0r0
D3w

(
y−1

i (r(s))
)
+

n

∑
i=1

ĝi(s)z(s).

Since w(s) = z(s)/π(s), then

0 ≥ 1
y0

D3w
(
y−1

i (s)
)
+

p0

y0r0
D3w

(
y−1

i (r(s))
)
+ w(s)π3(s)

n

∑
i=1

ĝi(s).

That is,

0 ≥
(

1
y0

D2w
(
y−1

i (s)
)
+

p0

y0r0
D2w

(
y−1

i (r(s))
))′

+ G2(s)w(s). (25)

Now, we set

Ψ(s) =
1
y0

D2w
(
y−1

i (s)
)
+

p0

y0r0
D2w

(
y−1

i (r(s))
)

. (26)

From the assumption (H4) and the observation that D2w is non-increasing, it fol-
lows that

Ψ(s) ≤
D2w

(
y−1

i (r(s))
)

y0

(
1 +

p0

r0

)
≤

D2w
(
y−1

max(r(s))
)

y0

(
1 +

p0

r0

)
. (27)
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By using (17) with ς = r(s) and ϱ = s and (27), we can deduce that

w(s) ≥ D2w(r(s))µ3(r(s), s) ≥ Ψ(ymax(s))µ3(r(s), s)
(

y0r0

r0 + p0

)
.

From the definition of Ψ and applying the above inequality in (25), we obtain

0 ≥ Ψ′(s) +
y0r0

r0 + p0
µ3(r(s), s)G2(s)π(s)Ψ(ymax(s)).

According to ([48], Theorem 1), this implies that (24) also has a positive solution,
leading to a contradiction. Therefore, the proof is concluded.

Corollary 3. Suppose that yi(r(s)) <s, i = 1, 2, ..., n holds. If

lim inf
s→∞

∫ s

ymax(s)
µ3(r(ℓ), ℓ)G2(ℓ)dℓ >

r0 + p0

y0r0e
, (28)

then Ω0 = ∅.

4. Absence of Solutions in Class N2

In this section, we focus on the asymptotic and monotonic characteristics of the
positive solutions for the equation under investigation. Furthermore, we outline specific
conditions that ensure the nonexistence of positive solutions that meet the case (N2) within
Category Ω2.

Lemma 4. Suppose that x ∈ Ω2. Then, eventually,

x(s) > (1 − p(s))z(s),

and Equation (8) eventually becomes

D3w(s) + G3(s)w(y(s)) ≤ 0. (29)

Proof. Since
z(s) = x(s) + p(s)x(r(s)),

then z(s) ≥ x(s) and

x(s) = z(s)− p(s)x(r(s)) ≥ z(s)− p(s)z(r(s)).

Since z(s) is increasing, then

x(s) ≥ (1 − p(s))z(s). (30)

From (8), we have

D3w(s) = −
n

∑
i=1

gi(s)x(yi(s)) ≤ −
n

∑
i=1

gi(s)(1 − p(yi(s)))z(yi(s)).

Since w = z/π, then

D3w(s) ≤ −
n

∑
i=1

gi(s)(1 − p(yi(s)))π3(yi(s))w(yi(s)).
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Since w′(s) > 0, then

D3w(s) ≤ −w(ymin(s))
n

∑
i=1

gi(s)(1 − p(yi(s)))π3(yi(s)).

That is,
D3w(s) ≤ −G3(s)w(ymin(s)).

Therefore, the proof is concluded.

Lemma 5. Assume that x ∈ Ω2. Then
(i) D1w(s) ≥ µ2(s)D2w(s) and D1w(s)/µ2(s) is decreasing;
(ii) w(s) ≥ µ3(s)D2w(s).

Proof. Let z(s) ∈ Ω2. Since D2w(s) is decreasing, then

D1w(s) ≥
∫ s

s0

D2w(ℓ)
1

κ2(ℓ)
dℓ ≥ D2w(s)

∫ s

s0

1
κ2(ℓ)

dℓ = µ2(s)D2w(s). (31)

Therefore, (
D1w(s)
µ2(s)

)′
=

µ2(s)D2w(s)− D1w(s)
κ2(s)µ2

2(s)
≤ 0.

Now,

w(s) =
∫ s

s0

D1w(ℓ)

µ2(ℓ)

µ2(ℓ)

κ1(ℓ)
dℓ ≥ D1w(s)

µ2(s)

∫ s

s0

µ2(ℓ)

κ1(ℓ)
dℓ = µ3(s)

D1w(s)
µ2(s)

,

and from (31), we find
w(s) ≥ µ3(s)D2w(s).

Theorem 4. Assume that there is a ρ ∈ C1([s0, ∞), (0, ∞)) such that

lim sup
s→∞

∫ s

s0

(
ρ(ℓ)G3(ℓ)−

κ1(ymin(ℓ))[ρ
′(ℓ)]2

4ρ(ℓ)y′(s)µ2(ymin(ℓ))

)
dℓ = ∞. (32)

Then Ω2 = ∅.

Proof. Suppose the contrary, i.e., that x ∈ Ω2. We define

H(s) = ρ(s)
D2w(s)

w(ymin(s))
. (33)

Then w(s) > 0. Differentiating (33), we have

H′(s) = ρ′(s)
D2w(s)

w(ymin(s))
+ ρ(s)

D3w(s)
w(ymin(s))

− y′min(s)ρ(s)
D2w(s)w′(ymin(s))

w2(ymin(s))

≤ ρ′(s)
ρ(s)

H(s)− ρ(s)G3(s)− y′min(s)H(s)
w′(ymin(s))
w(ymin(s))

. (34)

Using Lemma 5, we obtain

H′(s) ≤ ρ′(s)
ρ(s)

H(s)− ρ(s)G3(s)− y′min(s)H(s)
µ2(ymin(s))D2w(ymin(s))

κ1(ymin(s))w(ymin(s))
.
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Since D2w is decreasing, then

H′(s) ≤ ρ′(s)
ρ(s)

H(s)− ρ(s)G3(s)−
y′min(s)µ2(ymin(s))

κ1(ymin(s))
H(s)

D2w(s)
w(y(s))

=
ρ′(s)
ρ(s)

H(s)− ρ(s)G3(s)−
y′(s)µ2(ymin(s))
ρ(s)κ1(ymin(s))

H2(s) (35)

Using Lemma 1 where B = ρ′(s)/ρ(s), κ = y′(s)µ2(ymin(s))/ρ(s)κ1(ymin(s)), and
u = H, we have

ρ′(s)
ρ(s)

H(s)− y′(s)µ2(ymin(s))
ρ(s)κ1(ymin(s))

H2(s) ≤ κ1(ymin(s))[ρ′(s)]
2

4ρ(s)y′(s)µ2(ymin(s))
.

Substituting the previous inequality into (35), we obtain

H′(s) ≤ −ρ(s)g3(s)(s) +
κ1(ymin(s))[ρ′(s)]

2

4ρ(s)y′(s)µ2(ymin(s))
. (36)

Integrating (36) from s1 to s, we have

∫ s

s1

(
ρ(ℓ)G3(ℓ)−

κ1(ymin(ℓ))[ρ
′(ℓ)]2+

4ρ(ℓ)y′(s)µ2(ymin(ℓ))

)
dℓ ≤ H(s1),

which contradicts (32).

Theorem 5. If the differential equation

ξ ′(s) +
(
r0 + p0

r0

)
G1(s)µ3(ymin(s))ξ

(
r−1(ymin(s))

)
= 0, (37)

is oscillatory, then Ω2 = ∅.

Proof. Assume the contrary that x ∈ Ω2. Using (13), we see that

0 ≥ D3w(s) +
p0

r0
D3w(r(s)) +

n

∑
i=1

q̃i(s)z(yi(s)).

Since w(s) = z(s)/π3(s), and w′ > 0, then

0 ≥ D3w(s) +
p0

r0
D3w(r(s)) + w(ymin(s))

n

∑
i=1

q̃i(s)π3(yi(s)).

That is, (
D2w(s) +

p0

r0
D2w(r(s))

)′
+ G1(s)w(ymin(s)) ≤ 0.

Using (ii) in Lemma 5, we find(
D2w(s) +

p0

r0
D2w(r(s))

)′
+ G1(s)µ3(ymin(s))D2w(ymin(s)) ≤ 0.

Assuming the following:

ξ(s) = D2w(s) +
p0

r0
D2w(r(s)) ≤

(
1 +

p0

r0

)
D2w(r(s)). (38)
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Thus,

ξ
(
r−1(s)

)
≤
(

1 +
p0

r0

)
D2w(s),

and

ξ
(
r−1(ymin(s))

)
≤
(

1 +
p0

r0

)
D2w(ymin(s)). (39)

Substituting from (39) into (38), we conclude that

ξ ′(s) +
(
r0 + p0

r0

)
µ3(ymin(s))G1(s)ξ

(
r−1(ymin(s))

)
≤ 0.

According to ([48], Theorem 1), this implies that (37) also has a positive solution,
leading to a contradiction. Therefore, the proof is concluded.

Corollary 4. If

lim inf
s→∞

∫ s

r−1(ymin(s))
G1(ℓ)µ3(ymin(ℓ))dℓ >

r0 + p0

r0e
, (40)

then Ω2 = ∅.

Theorem 6. If the differential equation

B′(s) +
(

y0r0

r0 + p0

)
G2(s)π(s)µ(s)B

(
y
(
r−1(s)

))
= 0, (41)

is oscillatory, then Ω2 = ∅.

Proof. Assume the contrary that x ∈ Ω2. Using (25) and (ii) in Lemma 5, we see that

0 ≥
(

1
y0

D2w
(
y−1

i (s)
)
+

p0

y0r0
D2w

(
y−1

i (r(s))
))′

+ G2(s)µ3(s)D2w(s). (42)

Assume the following:

B(s) =
1
y0

D2w
(
y−1

i (s)
)
+

p0

y0r0
D2w

(
y−1

i (r(s))
)

(43)

It follows from r(s) <s that

B(s) ≤ r0 + p0

y0r0
D2w

(
y−1

min(r(s))
)

.

Thus,
y0r0

r0 + p0
B
(
ymin

(
r−1(s)

))
≤ D2w(s). (44)

Substituting (43) and (44) into (42), we conclude that

B′(s) +
(

y0r0

r0 + p0

)
G2(s)µ3(s)B

(
ymin

(
r−1(s)

))
≤ 0. (45)

In view of ([48], Theorem 1), we have that (41) also has a positive solution, i.e., a
contradiction. Thus, the proof is complete.

Corollary 5. If

lim inf
s→∞

∫ s

ymin(r−1(s))
G2(ℓ)µ3(ℓ)dℓ >

r0 + p0

y0r0e
, (46)

then Ω2 = ∅.
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5. Oscillatory Criteria

In this section, we combine the results obtained in the previous sections to derive
oscillatory criteria for the examined equation. By summarizing these findings, we es-
tablish a framework for understanding the conditions under which oscillatory behavior
is guaranteed.

Theorem 7. Assume that each one of the following conditions is satisfied separately:
(i) Conditions (20) and (40);
(ii) Conditions (21) and (40);
(iii) Conditions (28) and (46);
(iv) Conditions (23) and (40);
(v) Conditions (20) and (32);
(vi) Conditions (23) and (46);
(vii) Conditions (23) and (32).
Then, Equation (1) exhibits oscillatory behavior.

Proof. To demonstrate this, we begin by proving the first case (i), and the same method
applies to all other cases.

Assume for the sake of contradiction that x is an eventually positive solution of
Equation (8). According to Lemma 3, we can deduce that there are two potential scenarios
regarding the behavior of w and its derivatives. By applying Corollaries 1 and 4, we
observe that the conditions (20) and (40) imply the absence of solutions to Equation (8) that
fulfill the requirements of cases (N0) and N2, respectively. Consequently, this leads us to
conclude that our initial assumption must be false, thereby confirming that the solutions of
Equation (8) are indeed oscillatory.

The proofs for the remaining cases proceed in the same manner, with the corresponding
conditions substituted accordingly. This ensures that oscillatory behavior is consistently
maintained across all scenarios. Thus, the proof is complete.

6. Illustrative Examples

In this section, we include three examples to illustrate and confirm the validity of
our results.

Example 1. Consider the third-order neutral differential equation(
sα
(

sβ(x(s) + p0x(r0s))′(s)
)′)′

+
n

∑
i=1

q0

s3−α−β
x(yis) = 0, α > 1, β > 1, (47)

where z(s) = x(s) + p0x(r0s), α > 0, β > 0, 0 < p0 < 1. By comparing this equation with
Equation (1), we can observe that

r1(s) = sβ, r2(s) = sα, yi(s) = yis, r(s) = r0s, qi(s) =
q0

s3−α−β
.

As a result, we obtain

π1(s) =
s1−β

β − 1
, π2(s) =

s1−α

α − 1
, π3(s) =

s2−α−β

(α − 1)(α + β − 2)
, π∗(s) =

s2−α−β

(β − 1)(α + β − 2)
,

κ1(s) =
(β − 1)

(α − 1)2(α + β − 2)
s2−α, κ2(s) =

(α − 1)

(β − 1)2(α + β − 2)
s2−β.

Now, we can transform (47) into canonical form(
s2−β

(
s2−α

(
z(s)

π3(s)

)′
(s)

)′)′

+ (α − 1)(α + β − 2)
n

∑
i=1

q0

s
x(yis) = 0,
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which, setting w(s) = z(s)/π3(s), transforms to(
s2−β

(
s2−αw′(s)

)′)′
+ (α − 1)(α + β − 2)

q0

s

n

∑
i=1

x(yis) = 0.

Moreover,

µ1(s) =
sα−1

α − 1
, µ2(s) =

sβ−1

β − 1
, µ3(s) =

sβ+α−2

(β − 1)(β + α − 2)
,

and

ymax(s) = ymaxs = max{yis, i = 1, 2, ..., n}, ymin(s) = ymins = min{yis, i = 1, 2, ..., n}.

Example 2. Consider the special case of (47) that α = β = 2, which simplifies to(
s2
(

s2(x(s) + p0x(r0s))′(s)
)′)′

+
n

∑
i=1

q0sx(yis) = 0, (48)

where q0 > 0. Comparing this equation with (1), we observe that

r1(s) = r2(s) = s2, yi(s) = yis, r(s) = r0s, qi(s) = q0s.

Consequently, we obtain

π1(s) = π2(s) =
1
s

, π3(s) = π∗(s) =
1

2s2 .

By defining w(s) = z(s)/π3(s), we transform (48) into its canonical form:

w′′′(s) +
2q0

s

n

∑
i=1

x(yis) = 0.

Additionally, we have the following relations:

µ1(s) = µ2(s) = s, µ3(s) =
s2

2
,

gi(s) =
2q0

s
, g̃i(s) =

2q0

s
, ĝi(s) =

2q0yi
s

, G1(s) =
q0

s3

n

∑
i=1

1
y2

i
,

G2(s) =
q0

s3

n

∑
i=1

yi, G3(s) =
q0

s3 (1 − p0)
n

∑
i=1

1
y2

i
, i = 1, 2, ..., n,

and

ymax(s) = ymaxs = max{yis, i = 1, 2, ..., n}, ymin(s) = ymins = min{yis, i = 1, 2, ..., n}.

From Condition (20), we obtain

lim inf
s→∞

∫ s

r−1(ζ(s))
G1(ℓ)µ3(ζ(ℓ), ymax(ℓ))dℓ = lim inf

s→∞

∫ s

ζ0
r0

s

q0

ℓ3

n

∑
i=1

1
y2

i

(ζ0 − ymax)
2

2
ℓ2dℓ

=
q0(ζ0 − ymax)

2

2

n

∑
i=1

1
y2

i
ln

r0

ζ0
,

which holds if

q0 >
2

(ζ0 − ymax)
2 ln r0

ζ0
∑n

i=1
1
y2

i

(r0 + p0)

r0e
. (49)
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Condition (21) leads to

lim sup
s→∞

µ3(r(δ(s)), ymax(s))
∫ s

δ(s)
G1(ℓ)dℓ = lim sup

s→∞

(r0δ0 − ymax)
2s2

2

∫ s

δ0s

q0

ℓ3

n

∑
i=1

1
y2

i
dℓ

=
(r0δ0 − ymax)

2(1 − δ0)q0

4δ0

n

∑
i=1

1
y2

i
,

which holds if

q0 >
4δ0(r0 + p0)

(r0δ0 − ymax)
2(1 − δ0)r0 ∑n

i=1
1
y2

i

. (50)

Similarly, Condition (23) is satisfied if

q0 >
4(r0 + p0)(

r2
0 − ymax

)2
(1 − r0)∑n

i=1
1
y2

i

. (51)

Condition (28) gives

lim inf
s→∞

∫ s

ymax(s)
µ3(r(ℓ), ℓ)G2(ℓ)dℓ = lim inf

s→∞

∫ s

ymaxs

(r0 − 1)2ℓ2

2
q0

ℓ3

n

∑
i=1

yidℓ

=
q0(r0 − 1)2 ∑n

i=1 yi

2
ln

1
ymax

>
r0 + p0

y0r0e

and is satisfied when

q0 >
2

(r0 − 1)2(∑n
i=1 yi) ln 1

ymax

r0 + p0

y0r0e
. (52)

In Condition (32) where ρ(s) =s2, we find

lim sup
s→∞

∫ s

s0

(
ρ(ℓ)G3(ℓ)−

κ1(ymin(ℓ))[ρ
′(ℓ)]2

4ρ(ℓ)y′min(ℓ)µ2(ymin(ℓ))

)
dℓ

= lim sup
s→∞

∫ s

s0

(
ℓ2 q0

ℓ3 (1 − p0)
n

∑
i=1

1
y2

i
− 4ℓ2

4ℓ2yminyminℓ

)
dℓ

= lim sup
s→∞

∫ s

s0

(
q0(1 − p0)

n

∑
i=1

1
y2

i
− 1

y2
min

)
1
ℓ

dℓ = ∞,

which holds if

q0 >
1

y2
min(1 − p0)∑n

i=1
1
y2

i

. (53)

Similarly, Condition (40) yields

lim inf
s→∞

∫ s

r−1(ymin(s))
G1(ℓ)µ3(ymin(ℓ))dℓ = lim inf

s→∞

∫ s

ymin
r0

s

q0

ℓ3

n

∑
i=1

1
y2

i

y2
minℓ

2

2
dℓ

=
1
2

q0y
2
min

(
n

∑
i=1

1
y2

i

)
ln

r0

ymin
,

which is satisfied when

q0 >
2

y2
min

(
∑n

i=1
1
y2

i

)
ln r0

ymin

(r0 + p0)

r0e
. (54)
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Moreover, Condition (46) gives

lim inf
s→∞

∫ s

ymin(r−1(s))
G2(ℓ)µ3(ℓ)dℓ = lim inf

s→∞

∫ s

ymin
r0

s

q0

ℓ3

n

∑
i=1

yi
ℓ2

2
dℓ

=
q0

2

n

∑
i=1

yi ln
r0

ymin
>

r0 + p0

y0r0e
,

which holds if

q0 >
2

(∑n
i=1 yi) ln r0

ymin

r0 + p0

y0r0e
. (55)

Now, according to Theorem (7), we establish the oscillatory behavior of (48) through specific
pairs of conditions. Specifically, (49) pairs with (54), (50) pairs with (54), (52) pairs with (55), (51)
pairs with (54), (49) pairs with (53), (51) pairs with (55), and (51) pairs with (53). Consequently,
when considering these pairs, Equation (48) is confirmed to be oscillatory.

Example 3. Consider the special case of (48), which simplifies to(
s2

(
s2
(

x(s) + p0x
(

2
3

s
))′

(s)

)′)′

+ q0s
[

x
(

1
4

s
)
+ x
(

1
5

s
)
+ x
(

1
6

s
)]

= 0, (56)

Clearly,

n = 3, r1(s) = r2(s) = s2, ymax(s) =
1
4

s, ymin(s) =
1
6

s, r(s) =
2
3

s, qi(s) = q0s.

Thus, we obtain

π1(s) = π2(s) =
1
s

, π3(s) = π∗(s) =
1

2s2 .

By defining w(s) = z(s)/π∗(s), Equation (48) is transformed into its canonical form:

w′′′(s) +
2q0

s

[
x
(

1
4

s
)
+ x
(

1
5

s
)
+ x
(

1
6

s
)]

= 0.

Additionally, we have

gi(s) =
2q0

s
, g̃i(s) =

2q0

s
, G1(s) = 77q0

1
s3 , G2(s) =

37q0

60
1
s3 , G3(s) =

77q0

2
1
s3 .

Choosing ζ(s) = 1
3 s, we observe that ymax(s) = 1

4 s< 1
3 s= ζ(s) and r−1(ζ(s)) = 1

2 s<s, so
Condition (20) holds if

q0 > 3.473 9.

By choosing δ(s) = 1
2 s, we see that δ(s) <s and ymax(s) = 1

4 s< 1
3 s= r(δ(s)), so

Condition (21) holds if
q0 > 13.091.

Condition (23) is satisfied if
q0 > 4.808 9.

By setting y0 = 3, we have
(
y−1

i (s)
)′

=
(
y−1

i s
)′

= 1
yi

≥ y0 > 0, i = 1, 2, 3, so
Condition (28) is satisfied when

q0 > 0.18576.S

Condition (32) holds if
q0 > 0.415 58.
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Similarly, Condition (40) is satisfied when

q0 > 0.272 78.

Furthermore, Condition (46) holds if

q0 > 0.029172.

Therefore, if q0 > 13.091, all conditions are satisfied, and all solutions of Theorem (7) are
oscillatory when q0 > 13.091.

7. Conclusions

This study presents a comprehensive investigation into the oscillatory and asymptotic
behavior of neutral third-order differential equations by transforming them from noncanon-
ical to canonical forms. This transformation significantly simplifies the analytical process,
reducing the complexity of the problem from four cases to two. We have established spe-
cific conditions that effectively rule out the existence of Kneser-type solutions and positive
solutions under certain constraints. Building on these findings, we developed new criteria
that guarantee the oscillation of all solutions to the equations studied. This contribution
is crucial for advancing the theoretical framework of neutral differential equations and
provides a solid foundation for future analyses. Additionally, we provided illustrative
examples that demonstrate the practical applicability and theoretical significance of our
criteria. These examples highlight the effectiveness of our approach in addressing complex
problems related to neutral differential equations. The results obtained in this study extend
existing theoretical frameworks within the field, opening new avenues for further research.
We propose that future studies explore the application of our methods to higher-order
equations, particularly those of odd order n ≥ 3, as well as to more general forms, such as(

r2(s)
(

r1(s)
(
z′(s)

)α
)′)′

+
n

∑
i=1

qi(s)xα(yi(s)) = 0.

These extensions hold the potential to uncover deeper insights into the oscillatory and
asymptotic properties of complex systems, thereby contributing to the ongoing advance-
ment of the field.
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